Stabilisation of an unusual " γ -phase": Selective site doping, crystal structures and hydration of the γ -Ba₄V_xTa_{2-x}O₉ and γ -Ba₄V_xNb_{2-x}O₉ (x = 0.2/3) solid solutions

Alex Brown, Chris Ling

Mixed ionic-electronic conductors have a wide range of applications, including in solid oxide fuel cells, oxygen sensors and batteries. The compounds in the Ba₄ M_2O_9 (M = Nb, Ta) system are known to substantially hydrate and show mixed ionic-electronic conduction (MIEC).¹⁻³ The high temperature phase γ -Ba₄Nb₂O₉ forms a unique structure type, consisting of Nb in tetrahedral, trigonal bi-pyramidal and octahedral coordination sites.¹ This phase forms by heating the low temperature polymorph α -Ba₄Nb₂O₉ above 1200 °C. The equivalent tantalum compound Ba₄Ta₂O₉ also forms the low temperature α polymorph but at high temperatures instead forms a 6H perovskite.² Studies focusing on the hydration and conduction mechanisms in these compounds show that fully hydrated γ -Ba₄Nb₂O₉ uptakes 1/3 H2O per f.u. via hydroxylation and shows reasonable proton conduction at low temperatures.³

In this presentation I will show that two new compositional series can form the γ -phase: γ -Ba₄V_xTa_{2-x}O₉ and γ -Ba₄V_xNb_{2-x}O₉ (x = 0-2/3). Synthesis of the γ -tantalum phases are significant as this is the first time it has been shown that this structure type can form in the absence of niobium. For the Ba₄V_{2/3}Ta_{4/3}O₉ composition the γ -phase appears to be the thermodynamically preferred structure, forming at 200 °C lower that the parent compound (γ -Ba₄Nb₂O₉). We hypothesise that the stabilisation of the γ -phase is driven by the ionic size and bonding variability of the period 5 elements, with the smaller V⁵⁺ cations preferentially occupying the tetrahedral and trigonal bipyramidal sites. Structural determination of these phases was undertaken using X-ray and neutron powder diffraction. X-ray absorption spectroscopy collected from the Australian Synchrotron support Ta in only the octahedral sites, implying that V must occupy the lower coordination sites. SEM imaging and energy dispersive spectroscopy (EDS) are used to compliment the diffraction analysis and thermogravimetric analysis (TGA) has been used as a preliminary tool to study the changes during dehydration across the series.

References:

- 1. Ling C.D. et al., Chem. Mater. 2009, 21, 16, 3853-3864
- 2. Ling C.D. et al., Chem. Mater. 2010, 22, 2, 532–540
- 3. Wind J. et al., Chem. Mater. 2018, 30, 15, 4949-4958